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Abstract 7 

Objective: If a person eats more than the daily energy requirement, how does the palatability of 8 

the diet increase? Can the value of this palatability be quantified? 9 

Design: We used a form of math modelling called linear programming, to find the minimum cost 10 

diet, and to find the most palatable diet subject to budget constraints. Palatability was determined 11 

in two ways, first by using the author’s preferences, and second with random preferences under 12 

different scenarios for the distribution of preferences and for upper limits on consumption of 13 

each food. 14 

Setting: The study was done in New Zealand, using the U.S.D.A. food database, and New 15 

Zealand local prices. 16 

Subjects: The study was primarily economic, and did not require subjects. A small part of the 17 

study used the author’s food preferences. 18 

Interventions: None. 19 

Conclusions: We found that cheating on one’s diet has economic value, because a person can 20 

raise the palatability of the diet without increasing total cost. We quantify this economic value. 21 

Furthermore, we found that the value depends on the person’s budget. We conclude that middle 22 

and upper income people (or poor people in a wealth society) face a high economic temptation to 23 

cheat on their diets. To our knowledge, this is the largest diet problem solved to date. 24 

Sponsorship: None. 25 

Descriptors: nutrition, economics, linear programming. 26 

Introduction: the Minimum Cost Diet Problem (MinCDP) 27 

Posed by George Stigler (Stigler 1945), the Minimum Cost Diet Problem was first solved exactly 28 

by Dantzig (1963), and has since been studied by others. Garille & Gass (2001) give a nice 29 

overview of the literature, while revisiting Stigler’s original model in detail. A key problem with 30 

the MinCDP is that it tends to select unpalatable foods. The unpalatability of MinCDP solutions 31 

is well-known (Dantzig 1963, Garille & Gass 2001). Researchers have usually addressed 32 

palatability by adding bounds on foods (Dantzig 1963, Foytik 1981). Smith (1959) used a 33 

quadratic utility function. Balintfy (1964) used an integer program to select menu items. 34 

Recently, Darmon, Ferguson, & Briend (2002), taking a different approach, changed the model 35 

to minimise the difference to a typical diet, while varying the budget parametrically. While this 36 

produced diets that are close to what people actually eat, the diets did not always satisfy 37 

nutritional constraints. 38 

The questions we aimed to answer are: (1) How does palatability change with respect to the 39 

budget? (2) How does palatability change with respect to relaxing the upper bound on 40 
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kilocalories? In other words, by how much can a person improve palatability of their diet by 41 

cheating on it? 42 

This paper’s key contribution is to show that breaking one’s diet has economic value, and we 43 

quantify this economic value at its optimum. People eat more than they should because they can 44 

improve the palatability of their diet without spending more money. We also give a solution for 45 

the diet problem over a substantial subset of foods in the US Department of Agriculture’s 46 

database. To our knowledge, this is the largest diet problem solved to date. To help develop these 47 

results, we give a new method to measure palatability. 48 

We chose to use the MinCDP as a framework to answer these questions for several reasons. The 49 

MinCDP neatly encapsulates nutritional and budget information in one model. The model allows 50 

exploration of many diets, while ensuring feasibility with respect to nutrients and the budget. 51 

Furthermore, we are interested primarily in information at the margin. The linear programming 52 

solution produces dual prices, which are the rates of change of interest. (A dual price is the 53 

amount that the objective will improve, if the constraint were relaxed by one unit. For example, 54 

in minimizing diet cost, the dual price on the energy constraint is the dollars that could be saved 55 

if the diet required one less kilocalorie.) The drawback, of course, is that the MinCDP is not a 56 

behavioural model. The MinCDP does not accurately reflect how people actually choose food, 57 

mainly due to problems of palatability. Therefore, we used two different measures of palatability 58 

to develop general economic principles of diet. 59 

We used an Excel database of foods and their nutrients from the US Department of Agriculture 60 

(USDA 2002). The Excel file required quite a bit of attention for use in the MinCDP. First, it 61 

contained many near-duplicate records, such as eight records for chicken wings (roasted, stewed, 62 

raw, batter, flour, for each with skin or without skin). We removed many of these duplicates. The 63 

source file also contained a few spreadsheet errors – some data that appeared numerical (e.g. 64 

sodium in each food) was actually coded as a string. 65 

As part of preparing the database, we obtained local prices for 693 foods in the database. 66 

Collecting these prices was a major undertaking. To our knowledge, this is the largest food 67 

database with prices. (Foytik 1981, for example, obtained prices for 160 foods.) We removed 68 

many foods with American brand names because they are unavailable in New Zealand (e.g. 69 

Breyer’s ice cream). Significant differences between the US food supply and the NZ food supply 70 

became apparent, especially for foods native to the Americas, such as amaranth, squash, trout, 71 

and turkey. US grocery stores sometimes give away whole turkeys as holiday promotions, but 72 

turkey is expensive in NZ. Turkey baloney is almost non-existent. (There might have been a 73 

reverse situation with the moa bird!) Trout, for example, can be caught in NZ rivers, but cannot 74 

be sold legally. Fewer types of squash are available. Okra mercifully went unquoted; originally 75 

an African plant, it appears to be unavailable in NZ. Many differences in terminology also 76 

appeared. For example, Swiss chard is known locally as silver beet. Similarly, a rutabaga is 77 

known as a swede. In the end, we obtained 1,223 useable price quotes for 693 foods. For foods 78 

with more than one quote (usually from different stores), we used the lowest price. 79 

The standard model for the Minimum Cost Diet Problem 80 

Following compilation of the food and price database, we set up a standard linear programming 81 

formulation for the MinCDP. The MinCDP may be written as a set of linear inequalities (Dantzig 82 

1963) as follows. 83 

Indices: i foods, j nutrients. 84 
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Parameters 85 

aij = amount of nutrient j in 100 grams of food i, 86 

bj = required daily amount of nutrient j, 87 

ci = cost per 100 grams of food i. 88 

dj = maximum daily amount of nutrient j, 89 

m = the number of nutrients, 90 

n = the number of foods.  91 

Decision variables: xi = 100 gram servings to eat per day of food i. 92 

MinCDP: Min ∑n 
i=1 ci xi  subject to  (1) 93 

 ∑n 
i=1 aij xi ≥ bj, j=1,…,m,  (2) 94 

 ∑n 
i=1 aij xi ≤ dj, j=1,…,m,   (3) 95 

 xi ≥ 0.  (4) 96 

For the nutrition lower bounds bj and upper bounds dj in constraint sets 2 and 3, we used the 97 

nutritional requirements of a 44-year-old male (the author). We solved MinCDP with 98 

AMPL/CPlex (Fourer, Gay & Kernighan 2003). The “Actual” column shows the level of 99 

nutrients in the optimal solution to model MinCDP. The minimum cost diet is shown in Table 1. 100 

Table 1. Minimum cost solution, for the author’s diet requirements. 101 

Food Grams/day 

Wheat flour, whole-grain 210.2 

Rice, white, glutinous, raw 179.3 

Dandelion greens, raw 52.3 

Oil, soybn, salad or cooking, (hydr)&cttnsd 36.7 

Wheat flour, white, all-purpose, enr, bleached 33.4 

Leavening agents, baking pdr, low-sodium 17.8 

Chicken, liver, all classes, cooked, simmrd 15.5 

Beans, french, mature seeds, raw 13.6 

Wheat, durum 12.5 

Lamb, var meats & by-products, heart, cooked, brsd 7.3 

Acerola juice, raw 4.2 

Cereals rte, kellogg, kellogg's complete wheat bran flakes 2.6 

Wheat bran, crude 0.8 

This benchmark solution serves the purpose of finding the lowest cost diet. The diet cost 102 

NZ$0.952/day. (Raw dandelion greens were given a cost of NZ$0.07/100 grams, based on the 103 

time required to collect it. This “food” is in the USDA database and all over the local soccer 104 

field, but not in local stores.) Unfortunately, as with other solutions to this problem, many people 105 

would not find this diet to be particularly palatable. 106 

The rest of this study concentrates on two modifications to the above model. Suppose we were 107 

willing to spend, say, $1/day, rather than only $0.952. What diet should we choose? With more 108 

money, the model has a larger set of feasible diets available. Given that we are willing to spend 109 

more than the minimum, we can choose a different objective than minimizing cost. A reasonable 110 

objective is to maximize palatability. 111 
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A model for the Maximum Palatability Diet Problem (MaxPDP) 112 

To maximize palatability subject to a budget, we modified the MinCDP in two ways. First, we 113 

changed the objective from that of minimizing cost to maximizing palatability. Second, we 114 

added an inequality constraint on the total amount of money that could be spent on the diet. The 115 

new formulation, MaxPDP, is as follows. 116 

Indices: i foods, j nutrients. 117 

Parameters 118 

aij = amount of nutrient j in 100 grams of food i, 119 

B = budget per day.  120 

bj = required daily amount of nutrient j,  121 

ci = cost per 100 grams of food i.  122 

dj = maximum daily amount of nutrient j,  123 

fi = upper limit on food i,  124 

m = the number of nutrients,  125 

n = the number of foods,  126 

pi = palatability of food i.  127 

Decision variables: xi = 100 gram servings to eat per day of food i.  128 

MaxPDP: Max ∑n 
i=1 pi xi  subject to  (5) 129 

 ∑n 
i=1 aij xi ≥ bj, j=1,…,m,  (6) 130 

 ∑n 
i=1 aij xi ≤ dj, j=1,…,m,   (7) 131 

 ∑n 
i=1 ci xi   ≤ B,  (8) 132 

 0 ≤ xi ≤ fi.  (9) 133 

Note that the upper bound on energy is one of the constraints in set 7. We will denote the dual 134 

price for this constraint as the Greek letter epsilon, ε, suggesting energy. Thus, ε is the marginal 135 

increase in palatability for an additional kilocalorie. 136 

The value of pi is the palatability of food i. This parameter pi is therefore the driver of the model, 137 

and the most personal aspect, since even people with nearly identical nutritional requirements 138 

can have quite different tastes. What, then, is a useful value of pi to use in this model? 139 

We chose to find pi in two different ways. First, we laboriously determined the food preferences 140 

for one person, in a rather complicated way, which we describe next. While laborious, we 141 

anticipate that future personal diet-planning software would work in just the way that we specify. 142 

Second, we used random food preferences, which we discuss in a later section. 143 

Finding pi iteratively 144 

How should one select a numerical value of palatability for a food? If I think I like coffee twice 145 

as much as cucumber, does that mean I have to eat twice as much? Given my coffee intake, that 146 

would be too much cucumber! If I assign a palatability of zero to liver, will I have to eat it 147 

anyway? And how should we take into account the trade-offs of palatability to cost and 148 

palatability to nutrition? 149 

We have little hope of anyone exactly capturing correct pi values, even when allowing for the 150 

rather strict limitations of a linear programming model. Palatability is too subjective and 151 



Raffensperger, Wealth effects of maximizing palatability 

5 

dynamic. We change our minds too quickly. Besides, diet and food are creative processes, not 152 

restricted to a finite list. Writing a linear program to find a maximum palatability diet is a bit like 153 

writing a computer program to determine and create the finest painting (Raffensperger 2004). 154 

Nevertheless, we can ask people for binary choices: Which do you like better, A or B? The 155 

method we developed is to find approximate palatability in a question-and-answer manner to a 156 

set of proposed feasible diets, taking into account some of the sensitivity information from the 157 

linear programming output. The method is intended to reflect, to some extent, how a person 158 

might specify their tastes over time. Our first measure of preference pi was developed for one 159 

subject, the author, using the following steps. 160 

1. The parameter pi was first initialized to the number of 100-gram servings that a person would 161 

intuitively want to eat per year. For example, the author entered initial values of 730 for coffee 162 

(meaning about two cups of coffee per day for a year), 365 for red wine, and zero for lamb liver. 163 

Since entering palatability values for 693 foods was time consuming, a default value of 100 was 164 

entered for many foods. The model was then set to maximize total preference, subject to a budget 165 

constraint, as formulated in the previous section. At this point, the model did not include upper 166 

bounds on the foods, implying fi = ∞ for all i. 167 

2. We used an approach like subgradient optimization (Held & Karp, 1970), with respect to 168 

upper bounds fi on the foods. Subgradient optimization is a step-wise approach to adjusting 169 

penalties on relaxed constraints, to try to find feasibility of those constraints. As mentioned, the 170 

upper bounds on foods were relaxed at this point; rather than adding constraints, the palatabilities 171 

were adjusted. In response to a given solution with too much or too little of food i, the parameter 172 

pi was adjusted after inspection of the solution. If too much of food i appeared in the solution, the 173 

pi was lowered. If too little of a desirable food i appeared in the solution, then pi was raised. The 174 

model was solved again and the pi values adjusted many times. 175 

3. Even with penalties adjusted in this way, for a sufficiently large budget, the palatability-176 

maximizing model tended to produce solutions with too much of a given food, however 177 

palatable, such as a kilogram of strawberries. Over dozens of runs, it was found difficult to have 178 

precisely the right mix for palatability. There was often too much tomato juice, too little red 179 

wine, too many olives, or too much raw lemon. As mentioned, other researchers have simply 180 

added upper bounds on the amount of food per day. After a long while of attempting to avoid it, 181 

we found it useful to add upper bounds. The upper bound depended on the food; for example, 182 

dried bay leaf was given an upper bound of 20 grams, while cooked squash was given an upper 183 

bound of 250 grams. Upper bounds on the amount of each food had the pleasant effect of 184 

increasing the number of foods in the diet, as a result of enlarging the linear program’s basis. 185 

4. An upper bound implies that palatability is a non-linear function of quantity. When a food was 186 

at its upper bound, the dual price for the upper bound constraint (constraint set 9) was often 187 

positive, implying that increasing the upper bound would increase total palatability. This cannot 188 

be the case, since the dieter actually has lower palatability from raising the upper bound. We 189 

therefore adjusted the palatability pi downwards by an amount equal to the dual price. The model 190 

returned the same solution, but with a dual price of near zero. Unfortunately, the dual prices 191 

depend on the budget, and we are interested in studying this problem over a range of budgets. 192 

We can correct the palatabilities for one budget, but then they will not be exactly right for a 193 

different budget. The adjusted palatabilities were checked over a range of budgets, and the upper 194 

bound’s dual price was reasonably close to zero for modest budgets, but was higher for higher 195 
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budgets. But already, we have a strong indication that marginal palatability depends on the 196 

budget available. 197 

At the end of this iterative process, the resulting pi parameter is approximately one person’s 198 

sense of palatability for each food i, adjusted for nutrients and budget. The iterative process 199 

seems similar to how people actually choose their food. When we have tired of cabbage, we 200 

intuitively lower our palatability for it. We expect that future diet planning software would work 201 

in this way. The user interface might recommend a meal with a lot of cabbage, and then a binary 202 

“this is too much cabbage” button would tell the software to decrease the palatability on cabbage, 203 

in a stepwise fashion. Over time, with decreasing steps, the relative palatabilities would 204 

approximate the user’s true palatabilities, with only the assumptions of linearity and additivity. 205 

For quite large budgets, the model tended to add many drinks, such as wine, beer, coffee, milk, 206 

and juices. We considered adding an upper bound on total mass, but decided against it at this 207 

point. The constraint would have been important only for very high budgets, and we have no 208 

nutritional data on recommended upper limits on mass. 209 

With a budget of NZ$10/day, the palatability-maximizing model produced the diet in Table 1. To 210 

this researcher, such a diet would be quite palatable. Also shown below are final palatability 211 

values, found by adjusting pi over many runs to achieve a more desirable mix. These final 212 

palatability values pi are not the original values, but the adjusted values that produced a relatively 213 

palatable diet. Thus, they are naturally adjusted for nutrients and the budget. 214 

Table 2. A palatability-maximizing diet, subject to a budget of NZ$10/day. 215 

Food i 

Grams/day 

xi 

Palatability 

pi 

Coffee, brewed, espresso, rest-prep 400.0 122.1 

Cabbage, cooked, boiled, drained, without salt 300.0 51.0 

Milk, nonfat, fluid, without vit a (fat free or skim) 284.8 66.9 

Alcoholic bev, wine, table, red 250.0 357.3 

Bananas, raw 200.0 209.7 

Potatoes, microwaved, cooked in skn, flesh & skin, without salt 180.0 172.2 

Rice, white, long-grain, parbld, unenr, cooked 168.1 138.2 

Apple juice, canned or bottled, unswtnd, with vit c 150.0 85.9 

Boysenberries, frozen, unswtnd 150.0 112.5 

Pineapple, canned, water pack, sol&liquids 150.0 89.0 

Onions, cooked, boiled, drained, without salt 125.0 72.0 

Ice creams, choc 103.2 225.0 

Broccoli, flower clusters, raw 100.0 124.3 

Brussels sprouts, raw 100.0 100.8 

Brussels sprouts, cooked, boiled, drained, without salt 100.0 89.7 

Pineapple juice, canned, with vit c, unswtnd 100.0 92.7 

Beef, plate, inside skirt steak, ln, 0" fat, all grades, cooked, brld 86.4 437.6 

New Zealand spinach, raw 80.0 150.0 

Beans, snap, green, cooked, boiled, drained, without salt 50.0 91.1 

Beans, snap, green, frozen, all styles, unprep 50.0 85.2 

Pineapple, raw 41.0 108.1 

Peas, green, frozen, unprep 25.7 135.9 

Oil, veg, sunflower, linoleic, (60%&over) 17.4 80.0 
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 216 

After this model had been solved for the budget of $10/day, the model was solved 202 times, 217 

over a range of budget values from $0.96/day to $100. The initial $0.96 was chosen as it is just 218 

above the benchmark minimum cost value of $0.952. In each of the 202 solutions, the budget 219 

and total palatability were recorded. Figure 1, “Kcals ≤ 2000.1,” shows a graph of the budget 220 

versus total palatability. 221 

Palatability pi was not adjusted at each solution; the palatability coefficients pi used were those 222 

deemed acceptable for the $10/day solution given earlier. Therefore, the diets with budgets 223 

different form $10/day may not have truly maximized palatability, so the true total palatability 224 

for each point in Figure 1, “Kcals ≤ 2000.1,” may be higher, except for the $10 point. What a 225 

difficult problem this is! However, for development of personal diet software, a person’s budget 226 

would be relatively fixed over a reasonable planning horizon, so this would not be an 227 

impediment to implementation, and the process affords us a reasonable approximation. 228 

From Figure 1, we see the satiety of the wealthy – after about $20/day, more money does little to 229 

improve total palatability for this data. At these luxurious budgets, the marginal palatability for 230 

another dollar is near zero, as can be seen from the slope of Figure 1, “Kcals ≤ 2000.1.” The 231 

wealthy dieter may want to add finer wines, dark chocolates, and perhaps some foie gras to the 232 

database, but total palatability will still flatten out somewhere. 233 

Palatability and the energy constraint 234 

What, then, can a wealthy society do to improve the palatability of one’s diet? In solving these 235 

models, we noted that the upper bound on energy remained tight. This meant that a person could 236 

raise the palatability of their diet by eating more calories than they need, while staying within 237 

their budget. To observe quantitatively the marginal palatability per kilocalorie, we recorded the 238 

dual price on the energy constraint for each of the 202 models that were solved for Figure 1, 239 

“Kcals ≤ 2000.1.” This dual price is ε, the marginal palatability for an increase of one kilocalorie 240 

in the upper bound on energy. 241 

Figure 1. Palatability versus budget 242 

 243 
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In Figure 2, we have graphed the marginal palatability of another kilocalorie, ε, with respect to 244 

the budget. Note the rounded stair step shape – there is no reason to expect this graph to be 245 

smooth or monotonic. The general shape, however, is that relaxing the energy constraint always 246 

results in greater palatability (since ε is positive), but even more so with an increasing budget. 247 

Thus, the way for a wealthy person to improve palatability is not to spend more money, but to 248 

cheat on one’s diet. 249 

Figure 2. Marginal palatability per kilocalorie versus budget 250 

 251 

How large of an effect is this? How much can a person on a fixed budget improve the palatability 252 

of their diet by eating more kilocalories than they should? To answer this, we ran the same 202 253 

models, but this time, we relaxed the upper bound on kilocalories. We hasten to point out that 254 

kilocalories are bounded by other upper bounds, especially the upper bounds on carbohydrate, 255 

fat, and protein shown in Figure 1, “Kcals ≤ 2000.1.” But where will this take us? Figure 1, 256 

“Kcals ≤ ∞,” shows the answer – a great deal! We see that the dieter who cheats on the energy 257 

constraint could gain an improvement in palatability, and increasingly so with wealth. 258 

But this study is for only one person’s palatabilities. Can we expect these results to hold in 259 

general? We would expect the “increasing temptation with budget” result to hold over a wide 260 

range of tastes, because a cheap diet is so restricted that it is unlikely to be palatable (have some 261 

more liver!), hence relaxing the energy constraint a little bit will improve palatability only a 262 

little. An expensive diet is likely to be more palatable, so relaxing the energy constraint a little 263 

bit (just one more bite of chocolate éclair, please!) is likely to improve palatability a great deal. 264 

In short, relaxing the budget constraint allows foods with higher coefficients on palatability, 265 

which in turn raises the palatability per calorie. We shall see that when we switch to other 266 

measures of taste, these conclusions still hold. 267 

Experiments with random palatability values: marginal palatability per 268 

kilocalorie ε 269 

Since taste is highly personal, we must be careful not to generalize from a sample of one. To 270 

resolve this, the palatability study was done again many times with different random palatability 271 

values. We wrote a script in AMPL (Fourer, Gay & Kernighan 2003), which used the ODBC 272 

driver to read data directly from the spreadsheet. 273 
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Once we had a stable solution procedure, we solved thousands of LP models in the following 274 

way. 275 

For k=1 to 100: 276 

1. Choose a random palatability pi for each food i in the database. We call this a 277 

palatability set.  278 

2. For 100 different values of budget B  {$0.96, $1, $1.2, $1.4, …$92, $96, $100}, 279 

solve a diet problem to maximize palatability subject to the budget constraint with budget 280 

B. 281 

These steps resulted in 100x100 = 10,000 linear programs. 282 

Furthermore, in step 1 above, we must choose a distribution from which to draw pi. In fact, we 283 

used several different distributions. Furthermore, we do not know the upper bound fi that people 284 

prefer on amount of each food i, nor the upper bounds on total food and water. We therefore ran 285 

the above experiment in six ways: 286 

Experiment 1. No upper bounds on foods, total mass limited to 6 kg, preference distributed as 287 

max(0, normal(50,50)). 288 

Experiment 2. No upper bounds on foods, total mass limited to 6 kg, preference distributed as 289 

max(0, normal(50,10)). 290 

Experiment 3. No upper bounds on foods, water limited to 6 litres, preference distributed as 291 

max(0, normal(50,50)). 292 

Experiment 4. No upper bounds on foods, water limited to 6 litres, preference uniformly 293 

distributed 0-100. 294 

Experiment 5. No upper bounds on foods, preference uniformly distributed 0-100. 295 

Experiment 6. Upper bounds on foods randomly distributed as max(0,Normal(3,1)), total mass 296 

limited to 3 kg, preference distributed as max(0, normal(50,10)). 297 

Generally, we believe these experiments to be most valid for lower budgets, e.g., less than $30 or 298 

$40. Those diets look plausible, while the diets at very high budgets look implausible. 299 

Perhaps the most unreasonable of these experiments is Experiment 5. Experiment 5 had no upper 300 

bound on each food or on total food. In this case, the model increased liquids with little or no 301 

nutrients, since those liquids tended to be inexpensive, and still had a positive palatability. The 302 

resulting diets were absurd, e.g. including 52 litres of water and 21 litres of tea. By constraining 303 

total mass or water in the other experiments, we sought to put an upper limit on the amount that a 304 

person would actually want to eat in a day. These constraints tended to be tight only with budgets 305 

over $20. Interestingly, while Experiment 4 limited water intake to 6 litres, it resulted in diets 306 

with more calories, mainly from alcohol. Thus, constraining volume actually encouraged the 307 

consumption of calories. However, this was at the speculative high end of the budget. 308 

We next present the results of these six experiments. From Figure 3, we see that in every case, 309 

the graph of ε rises sharply up to a budget of about $10, then (sometimes after a bit of a fall), the 310 

graph of ε tends to flatten out, though the scale can change drastically. A preliminary set of 311 

experiments produced similar results, notably the eyehook shape similar to Experiment 4, but 312 

were deemed unbelievable and re-done. 313 
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A recent survey of New Zealand food budgets (Otago 2003) suggests that a nutritious New 314 

Zealand diet costs about $7 per person per day (close to the author’s actual food budget). 315 

However, a news report (XtraMSN 2003) suggested that budgets of poor people are less than 316 

this, as low as $3.60 per person per day. Given that the minimum possible is slightly less than $1, 317 

the range of $3 to $10 seems important for people’s behaviours. 318 

Figure 3 shows that for this range of budgets, a little increase in the budget provides large 319 

absolute gains in palatability. More interestingly, over this important range of $3 to $10, we 320 

observe in Figure 3 a strongly increasing “temptation to cheat” on the energy constraint with an 321 

increasing budget. The marginal palatability per kilocalorie is increasing over this range. It 322 

appears that those who can spend more on food may be more tempted to cheat on their diets. 323 

Figure 3. Marginal palatability versus budget over six esperiments 324 

 325 

It is important to understand that, within the restrictions of good nutrition, more money allows a 326 

person to buy a better-tasting calorie for almost any person’s taste. A severely restricted budget 327 

severely restricts choice, and this restricted choice is very likely to be an unappealing set of 328 

foods. At the very low end of the budget, the model has very little choice. A palatability-329 

maximizing diet on a very low budget is almost identical to a pure cost-minimizing diet. There 330 

are just too few choices. With just a little more money, around $2, we have access to a somewhat 331 

wider selection of foods, a few of which are likely to be very palatable. 332 

For budgets of more than $5 to $10, the gentle fall in ε makes more sense. The model has a 333 

limited set of foods (in spite of the empirically large database), much more limited than people 334 
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really have available to them. For example, people eat in restaurants at very high cost for greater 335 

palatability, and for other factors such as enjoyment of the environment, convenience, and to 336 

socialize. If many foods (such as fine wines, dark chocolates, and foie gras) were added to the 337 

database, it is speculated that palatability per kilocalorie would tend to increase rather than 338 

decrease. Also, other constraints, especially upper bounds on other nutrients, become more 339 

binding. 340 

So we have seen what happens at the margin. But what of total palatability? Figure 4 shows total 341 

palatability by budget for experiment 4, which is quite representative of the others, varying only 342 

in scale. The graph is similar to Figure 1. We again see the satiety of the wealthy – after about 343 

$10, little more palatability is gained for more money. 344 

We see in a quantitative way the need for personal discipline in maintaining a healthy diet for a 345 

relatively wealthy person. The wealthy will have greater difficulty resisting temptation, because, 346 

on average, they can have a greater increase in palatability by giving into to their waistline 347 

without an increase in the budget. 348 

Figure 4. Results of Experiment 4. 349 

 350 

The economic value to palatability of cheating on one’s diet 351 

We have seen that someone willing to cheat on their kilocalorie constraint can increase the 352 

palatability of their diet. This has economic value, and we can quantify it. Graphically, this is the 353 

horizontal distance between the curves of palatability to budget for a restricted diet and an 354 

unrestricted diet. 355 

Now here is a fascinating result: This difference can tend to infinity. For example, consider 356 

Figure 4, where a person is spending about $12 per day. If they cheat on their diet, total 357 

palatability is about 6,500. But – for this data – palatability of 6,500 is higher than the person 358 

could obtain on a restricted diet for any budget! This is shown graphically in Figure 5. 359 

Consider the relatively poor person, spending $3 to $10. This person has an incentive to eat more 360 

kilocalories, because cheating on their diet allows greater palatability within their budget 361 

constraint. The extra calories they eat have economic value to them, because to get the same 362 

palatability with a restricted diet would cost more money. These values are shown in Table 3 for 363 
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a range of budgets. We see that for a $7 budget, relaxing the energy constraint is worth between 364 

$0.26 and $0.95 for this data. 365 

Table 3. Value (cents) to palatability of relaxing the energy constraint, for different budgets/day. 366 

 Budget $3 $4 $5 $6 $7 $8 $9 $10 $15 $20 $25 367 

 Expt 1 1¢ 3¢ 6¢ 16¢ 26¢ 41¢ 62¢ 90¢ 312¢ 838¢ 4190¢ 368 

 Expt 2 0¢ 4 6 16 26 41 62 90 312 839 4205 369 

 Expt 3 1¢ 2 9 21 45 73 123 192 808 4034 NA 370 

 Expt 4 0¢ 1 10 31 95 258 751 1491 NA NA NA 371 

 Expt 5 0¢ 1 9 23 30 30 30 31 31 33 39 372 

 Expt 6 1¢ 7 17 29 51 76 115 176  NA NA NA 373 

 374 

This incentive to cheat increases with budget, up to a point. Consider the wealthy person 375 

spending $20 or more. From Figure 4, we see that their palatability will level off, and they 376 

already have a high palatability. They face various upper bounds, such as on the amount of each 377 

food they want to eat, the total amount of food they are willing to eat, etc. When money is not a 378 

constraint, something else eventually becomes binding. 379 

On the other hand, since people do not solve computer models when selecting their diets, they 380 

have no guarantee that their diets will satisfy any dietary constraint. Thus, the values shown here 381 

may be considered lower bounds on the palatability and economic value of cheating. 382 

Figure 5. Value of cheating on the diet 383 

 384 

Conclusion: It is cheaper to eat more than to eat better. 385 

This study shows that for a palatability maximizing model, an increase in the budget produces an 386 

increase in the marginal palatability per kilocalorie. The translation is that a wealthy person can 387 
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raise palatability by cheating on their diet, and cheating on their diet has economic value. When 388 

people can spend more per calorie, the next calorie is more palatable than the previous. The 389 

model shows that this effect is quite strong, for a wide range of tastes, over an important range of 390 

budgets. Thus, wealthy societies are likely to have more difficulty maintaining discipline in a 391 

diet than will poorer societies, because wealthy societies have more choice. 392 

Our model suggests the possibility of a strange exception. If the eyehook shape of Experiment 4 393 

were found to be representative of actual diets, we would have a possible explanation as to why 394 

people of lower incomes tend to obesity. A subsistence society would be at the far left end of 395 

these curves. A poorer family within a wealthier society would likely be somewhat further to the 396 

right than a family in the subsistence society. Depending on their budget, they may actually have 397 

higher marginal palatability for the next kilocalorie than do wealthier people. We leave these 398 

questions for future study. 399 

We speculate that some weight-reduction diets (such as the currently fashionable low 400 

carbohydrate diets) succeed partly because a large class of foods are proscribed. Restricting the 401 

allowable set of foods lowers the marginal palatability per kilocalorie, thus reducing the 402 

temptation to cheat on one’s diet. 403 

Taking this to a policy level, the results suggest that obesity in a wealthy population is not likely 404 

to improve much at the margin by taxing food unselectively, because people can improve 405 

palatability by changing their menu to increase kilocalories while staying within their budget. In 406 

fact, taxing food unselectively could make the problem worse. 407 

The food database is available upon request from the author. 408 
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